
SnakeMD

The Renegade Coder

Apr 15, 2023

CONTENTS

1 Installation 3

2 Usage 5

3 Documentation 7

4 Resources 27

5 Version History 29

Python Module Index 35

Index 37

i

ii

SnakeMD

SnakeMD is a library for generating markdown files using Python. Use the links below to navigate the docs.

CONTENTS 1

SnakeMD

2 CONTENTS

CHAPTER

ONE

INSTALLATION

The quick and dirty way to install SnakeMD is to use pip:

pip install snakemd

If you’d like access to any pre-releases, you can also install SnakeMD with the --pre flag:

pip install --pre snakemd

Be aware that pre-releases are not suitable for production code.

3

SnakeMD

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

SnakeMD is a Python library for building markdown documents. We can use it by importing the SnakeMD module
into our program directly:

>>> import snakemd

This way, we’ll have access to all of the classes available in the SnakeMD module. From here, we can take advantage
of a handy function to create a new document:

>>> doc = snakemd.new_doc()

This will create a new snakemd.Document object. Alternatively, we can import the Document class directly:

>>> from snakemd import Document

From here, we can instantiate the Document class:

>>> doc = Document()

While there is nothing in our document currently, we can render an empty one as follows:

>>> doc.dump("README")

This will create an empty README.md file in our working directory. Of course, if we want something more interesting,
we’ll have to add some content to our document. To start, we’ll add a title to the document:

>>> doc.add_heading("Why Use SnakeMD?")
<snakemd.elements.Heading object at ...>

From here, we can do pretty much anything we’d like. Some quick actions might be to include a paragraph about this
library as well as a list of reasons why we might use it:

>>> p = doc.add_paragraph(
... """
... SnakeMD is a library for generating markdown, and here's
... why you might choose to use it:
... """
...)

>>> doc.add_unordered_list([
... "SnakeMD makes it easy to create markdown files.",
... "SnakeMD has been used to automate documentation for The Renegade Coder projects.
→˓"

(continues on next page)

5

SnakeMD

(continued from previous page)

...])
<snakemd.elements.MDList object at ...>

One thing that’s really cool about using SnakeMD is that we can build out the structure of a document before we modify
it to include any links. For example, notice how we saved the output of the snakemd.Document.add_paragraph()
method from above. Well, as it turns out, all of the document methods return the objects that are generated as a result
of their use. In this case, the method returns a Paragraph object which we can modify. Here’s how we might insert a
link to the docs:

>>> p.insert_link("SnakeMD", "https://snakemd.therenegadecoder.com")
<snakemd.elements.Paragraph object at ...>

And if all goes well, we can output the results by outputting the document like before. Or, if we just need to see the
results as a string, we can convert the document to a string directly:

>>> print(doc)

And this is what we’ll get:

Why Use SnakeMD?

[SnakeMD](https://snakemd.therenegadecoder.com) is a library for generating markdown,␣
→˓and here's why you might choose to use it:

- SnakeMD makes it easy to create markdown files.
- SnakeMD has been used to automate documentation for The Renegade Coder projects.

For completion, here is a working program to generate the document from above in a file called README.md:

import snakemd

doc = snakemd.new_doc()

doc.add_heading("Why Use SnakeMD?")
p = doc.add_paragraph(
"""
SnakeMD is a library for generating markdown, and here's
why you might choose to use it:
"""

)
doc.add_unordered_list([

"SnakeMD makes it easy to create markdown files.",
"SnakeMD has been used to automate documentation for The Renegade Coder projects."

])
p.insert_link("SnakeMD", "https://snakemd.therenegadecoder.com")

doc.dump("README")

As always, feel free to check out the rest of the documentation for all of the ways you can make use of SnakeMD. If
you find an issues, make sure to head over to the GitHub repo and let us know.

6 Chapter 2. Usage

CHAPTER

THREE

DOCUMENTATION

The documentation page lists out all of the relevant classes and functions for generating markdown documents in
Python.

3.1 The Document API

SnakeMD is designed with different types of users in mind. The main type of user is the person who wants to design and
generate markdown quickly without worrying too much about the format or styling of their documents. To help this type
of user, we’ve developed a high-level API which consists of a single function, snakemd.new_doc(). This function
returns a snakemd.Document object that is ready to be modified using any of the convenience methods available in the
snakemd.Document class. Both the snakemd.new_doc() function and the snakemd.Document class are detailed
below.

3.1.1 Module

The SnakeMD module contains all of the functionality for generating markdown files with Python. To get started,
check out Usage for quickstart sample code.

snakemd.new_doc()→ Document
Creates a new SnakeMD document. This is a convenience function that allows you to create a new markdown
document without having to import the Document class. This is useful for anyone who wants to take advantage
of the procedural interface of SnakeMD. For those looking for a bit more control, each element class will need
to be imported as needed.

>>> doc = snakemd.new_doc()

Returns
a new Document object

3.1.2 Document

Note: All of the methods described in the snakemd.Document class are assumed to work without any snakemd.
Element imports. In circumstances where methods may make use of Elements, such as in snakemd.Document.
add_table(), the snakemd module will be referenced directly in the sample source code.

For the average user, the document object is the only object in the library necessary to create markdown files. Document
objects are automatically created from the new_doc() function of the SnakeMD module.

7

SnakeMD

class snakemd.Document

Bases: object

A document represents a markdown file. Documents store a collection of blocks which are appended with new
lines between to generate the markdown document. Document methods are intended to provided convenience
when generating a markdown file. However, the functionality is not exhaustive. To get the full range of markdown
functionality, you can take advantage of the add_block() function to provide custom markdown blocks.

add_block(block: Block)→ Block
A generic function for appending blocks to the document. Use this function when you want a little more
control over what the output looks like.

>>> doc = snakemd.new_doc()
>>> doc.add_block(snakemd.Heading("Python is Cool!", 2))
<snakemd.elements.Heading object at ...>
>>> str(doc)
'## Python is Cool!'

Parameters
block (Block) – a markdown block (e.g., Table, Heading, etc.)

Returns
the Block added to this Document

add_checklist(items: Iterable[str])→ MDList
A convenience method which adds a checklist to the document.

>>> doc = snakemd.new_doc()
>>> doc.add_checklist(["Okabe", "Mayuri", "Kurisu"])
<snakemd.elements.MDList object at ...>
>>> str(doc)
'- [] Okabe\n- [] Mayuri\n- [] Kurisu'

Parameters
items (Iterable[str]) – a “list” of strings

Returns
the MDList added to this Document

add_code(code: str, lang: str = 'generic')→ Code
A convenience method which adds a code block to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_code("x = 5")
<snakemd.elements.Code object at ...>
>>> str(doc)
'```generic\nx = 5\n```'

Parameters

• code (str) – a preformatted code string

• lang (str) – the language for syntax highlighting

Returns
the Code block added to this Document

8 Chapter 3. Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

add_heading(text: str, level: int = 1)→ Heading
A convenience method which adds a heading to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_heading("Welcome to SnakeMD!")
<snakemd.elements.Heading object at ...>
>>> str(doc)
'# Welcome to SnakeMD!'

doc.add_heading("Welcome to SnakeMD!")

Parameters

• text (str) – the text for the heading

• level (int) – the level of the heading from 1 to 6

Returns
the Heading added to this Document

add_horizontal_rule()→ HorizontalRule
A convenience method which adds a horizontal rule to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_horizontal_rule()
<snakemd.elements.HorizontalRule object at ...>
>>> str(doc)
'***'

Returns
the HorizontalRule added to this Document

add_ordered_list(items: Iterable[str])→ MDList
A convenience method which adds an ordered list to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_ordered_list(["Goku", "Piccolo", "Vegeta"])
<snakemd.elements.MDList object at ...>
>>> str(doc)
'1. Goku\n2. Piccolo\n3. Vegeta'

Parameters
items (Iterable[str]) – a “list” of strings

Returns
the MDList added to this Document

add_paragraph(text: str)→ Paragraph
A convenience method which adds a paragraph of text to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_paragraph("Mitochondria is the powerhouse of the cell.")
<snakemd.elements.Paragraph object at ...>

(continues on next page)

3.1. The Document API 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

(continued from previous page)

>>> str(doc)
'Mitochondria is the powerhouse of the cell.'

Parameters
text (str) – any arbitrary text

Returns
the Paragraph added to this Document

add_quote(text: str)→ Quote
A convenience method which adds a blockquote to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_quote("Welcome to the Internet!")
<snakemd.elements.Quote object at ...>
>>> str(doc)
'> Welcome to the Internet!'

Parameters
text (str) – the text to be quoted

Returns
the Quote added to this Document

add_raw(text: str)→ Raw
A convenience method which adds text as-is to the document:

>>> doc = snakemd.new_doc()
>>> doc.add_raw("X: 5\nY: 4\nZ: 3")
<snakemd.elements.Raw object at ...>
>>> str(doc)
'X: 5\nY: 4\nZ: 3'

Parameters
text (str) – some text

Returns
the Raw block added to this Document

add_table(header: Iterable[str], data: Iterable[Iterable[str]], align: Optional[Iterable[Align]] = None,
indent: int = 0)→ Table

A convenience method which adds a table to the document:

>>> doc = snakemd.new_doc()
>>> header = ["Place", "Name"]
>>> rows = [["1st", "Robert"], ["2nd", "Rae"]]
>>> align = [snakemd.Table.Align.CENTER, snakemd.Table.Align.RIGHT]
>>> doc.add_table(header, rows, align=align)
<snakemd.elements.Table object at ...>
>>> str(doc)
'| Place | Name |\n| :---: | -----: |\n| 1st | Robert |\n| 2nd | Rae |'

10 Chapter 3. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int

SnakeMD

Parameters

• header (Iterable[str]) – a “list” of strings

• data (Iterable[Iterable[str]]) – a “list” of “lists” of strings

• align (Iterable[Table.Align]) – a “list” of column alignment values; defaults to
None

• indent (int) – indent size for the whole table

Returns
the Table added to this Document

add_table_of_contents(levels: range = range(2, 3))→ TableOfContents
A convenience method which creates a table of contents. This function can be called where you want to
add a table of contents to your document. The table itself is lazy loaded, so it always captures all of the
heading blocks regardless of where the table of contents is added to the document.

>>> doc = snakemd.new_doc()
>>> doc.add_table_of_contents()
<snakemd.templates.TableOfContents object at ...>
>>> doc.add_heading("First Item", 2)
<snakemd.elements.Heading object at ...>
>>> doc.add_heading("Second Item", 2)
<snakemd.elements.Heading object at ...>
>>> str(doc)
'1. [First Item](#first-item)\n2. [Second Item](#second-item)\n\n## First Item\
→˓n\n## Second Item'

Parameters
levels (range) – a range of heading levels to be included in the table of contents

Returns
the TableOfContents added to this Document

add_unordered_list(items: Iterable[str])→ MDList
A convenience method which adds an unordered list to the document.

>>> doc = snakemd.new_doc()
>>> doc.add_unordered_list(["Deku", "Bakugo", "Kirishima"])
<snakemd.elements.MDList object at ...>
>>> str(doc)
'- Deku\n- Bakugo\n- Kirishima'

Parameters
items (Iterable[str]) – a “list” of strings

Returns
the MDList added to this Document

dump(name: str, dir: str | os.PathLike = '', ext: str = 'md', encoding: str = 'utf-8')→ None
Outputs the markdown document to a file. This method assumes the output directory is the current working
directory. Any alternative directory provided will be made if it does not already exist. This method also
assumes a file extension of md and a file encoding of utf-8, all of which are configurable through the method
parameters.

3.1. The Document API 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

SnakeMD

>>> doc = snakemd.new_doc()
>>> doc.add_horizontal_rule()
<snakemd.elements.HorizontalRule object at ...>
>>> doc.dump("README")

Parameters

• name (str) – the name of the markdown file to output without the file extension

• dir (str | os.PathLike) – the output directory for the markdown file; defaults to “”

• ext (str) – the output file extension; defaults to “md”

• encoding (str) – the encoding to use; defaults to utf-8

scramble()→ None
A silly method which mixes all of the blocks in this document in a random order.

>>> doc = snakemd.new_doc()
>>> doc.add_horizontal_rule()
<snakemd.elements.HorizontalRule object at ...>
>>> doc.scramble()
>>> str(doc)
'***'

3.2 The Element API

For users who want a little more control over how their markdown is formatted, SnakeMD provides a low-level API
constructed of elements.

3.2.1 Element Interface

Broadly speaking, anything that can be rendered as markdown is known as an element. Below is the element interface.

class snakemd.Element

Bases: ABC

A generic element interface which provides a framework for all types of elements in the collection. In short,
elements must be able to be converted to their markdown representation using the built-in str constructor.

abstract __str__()→ str
Return str(self).

For consistency, element mutators all return self to allow for method chaining. This is sometimes referred to as the
fluent interface pattern, and it’s particularly useful for applying a series of changes to a single element. This design
choice most obviously shines in both snakemd.Paragraph , which allows different aspects of the text to be replaced
over a series of chained methods, and snakemd.Inline, which allows inline elements to be styled over a series of
chained methods.

For practical purposes, elements cannot be constructed directly. Instead, they are broken down into two main categories:
block and inline.

12 Chapter 3. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

3.2.2 Block Elements

SnakeMD block elements borrow from the idea of block-level elements from HTML. And because Markdown doc-
uments are constructed from a series of blocks, users of SnakeMD can seemlessly append their own custom blocks
using the snakemd.Document.add_block() method. To make use of this method, blocks must be imported and
constructed manually, like the following snakemd.Heading example:

>>> from snakemd import Heading, new_doc
>>> doc = new_doc()
>>> heading = doc.add_block(Heading("Hello, World!", 2))

The remainder of this section introduces the Block interface as well as all of the Blocks currently available for use.

Block Interface

All markdown blocks inherit from the Block interface.

class snakemd.Block

Bases: Element

A block element in Markdown. A block is defined as a standalone element starting on a newline. Examples of
blocks include paragraphs (i.e., <p>), headings (e.g., <h1>, <h2>, etc.), tables (i.e., <table>), and lists (e.g.,
, , etc.).

Code

class snakemd.Code(code: str | snakemd.elements.Code, lang: str = 'generic')
Bases: Block

A code block is a standalone block of syntax-highlighted code. Code blocks can have generic highlighting or
highlighting based on their language.

Parameters

• code (str | Code) – the sourcecode to format as a Markdown code block

– set to a string to render a preformatted code block (i.e., whitespace is respected)

– set to a Code object to render a nested code block

• lang (str) – the programming language for the code block; defaults to ‘generic’

__str__()→ str
Renders the code block as a markdown string. Markdown code blocks are returned with the fenced code
block format using backticks:

```python
x = 5
y = 2 + x
```

Code blocks can be nested and will be rendered with increasing numbers of backticks.

Returns
the code block as a markdown string

3.2. The Element API 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

Heading

class snakemd.Heading(text: Union[str, Inline, Iterable[snakemd.elements.Inline | str]], level: int)
Bases: Block

A heading is a text block which serves as the title for a new section of a document. Headings come in six main
sizes which correspond to the six headings sizes in HTML (e.g., <h1>).

Raises
ValueError – when level < 1 or level > 6

Parameters

• text (str | Inline | Iterable[Inline | str]) – the heading text

– set to a string to render raw heading text

– set to an Inline object to render a styled heading (e.g., bold, link, code, etc.)

– set to a “list” of the prior options to render a header with more granular control over the
individual inline elements

• level (int) – the heading level between 1 and 6

__str__()→ str
Renders the heading as a markdown string. Markdown headings are returned using the # syntax where the
number of # symbols corresponds to the heading level:

This is an H1
This is an H2
This is an H3

Returns
the heading as a markdown string

demote()→ Heading
Demotes a heading down a level. Fails silently if the heading is already at the lowest level (i.e., <h6>).

>>> heading = Heading("This is an H2 heading", 1).demote()
>>> str(heading)
'## This is an H2 heading'

Returns
self

get_text()→ str
Returns the heading text free of any styling. Useful when the heading is composed of various Inline ele-
ments, and the raw text is needed without styling or linking.

>>> heading = Heading("This is the heading text", 1)
>>> heading.get_text()
'This is the heading text'

Returns
the heading as a string

14 Chapter 3. Documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

promote()→ Heading
Promotes a heading up a level. Fails silently if the heading is already at the highest level (i.e., <h1>).

>>> heading = Heading("This is an H2 heading", 3).promote()
>>> str(heading)
'## This is an H2 heading'

Returns
self

HorizontalRule

class snakemd.HorizontalRule

Bases: Block

A horizontal rule is a line separating different sections of a document. Horizontal rules only come in one form,
so there are no settings to adjust.

__str__()→ str
Renders the horizontal rule as a markdown string. Markdown horizontal rules come in a variety of flavors,
but the format used in this repo is the triple asterisk (i.e., ***) to avoid clashes with list formatting.

Returns
the horizontal rule as a markdown string

MDList

class snakemd.MDList(items: Iterable[str | snakemd.elements.Inline | snakemd.elements.Block], ordered: bool
= False, checked: Union[None, bool, Iterable[bool]] = None)

Bases: Block

A markdown list is a standalone list that comes in three varieties: ordered, unordered, and checked.

Raises
ValueError – when the checked argument is an Iterable[bool] that does not match the number
of top-level elements in the list

Parameters

• items (Iterable[str | Inline | Block]) – a “list” of objects to be rendered as a list

• ordered (bool) – the ordered state of the list

– defaults to False which renders an unordered list (i.e., -)

– set to True to render an ordered list (i.e., 1.)

• checked (None | bool | Iterable[bool]) – the checked state of the list

– defaults to None which excludes checkboxes from being rendered

– set to False to render a series of unchecked boxes (i.e., - [])

– set to True to render a series of checked boxes (i.e., - [x])

– set to Iterable[bool] to render the checked status of the top-level list elements directly

3.2. The Element API 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

SnakeMD

__str__()→ str
Renders the markdown list as a markdown string. Markdown lists come in a variety of flavors and are
customized according to the settings provided. For example, if the the ordered flag is set, an ordered list
will be rendered in markdown. Unordered lists and checklists both use the hyphen syntax for markdown
(i.e., -) to avoid clashes with horizontal rules:

- This is an unordered list item
- So, is this

Ordered lists use numbers for each list item:

1. This is an ordered list item
2. So, is this

Returns
the list as a markdown string

Paragraph

class snakemd.Paragraph(content: Union[str, Iterable[snakemd.elements.Inline | str]])
Bases: Block

A paragraph is a standalone block of text.

Parameters
content (str | Iterable[str | Inline]) – the text to be rendered as a paragraph where
whitespace is not respected (see snakemd.Raw for whitespace sensitive applications)

• set to a string to render a single line of unformatted text

• set to a “list” of text objects to render a paragraph with more granular control over the indi-
vidual text objects (e.g., linking, styling, etc.)

__str__()→ str
Renders the paragraph as a markdown string. Markdown paragraphs are returned as a singular line of text
with all of the underlying elements rendered as expected:

This is an example of a **paragraph** with _formatting_

Returns
the paragraph as a markdown string

add(text: str | snakemd.elements.Inline)→ Paragraph
Adds a text object to the paragraph.

>>> paragraph = Paragraph("Hello! ").add("I come in peace")
>>> str(paragraph)
'Hello! I come in peace'

Parameters
text (str | Inline) – a custom Inline element

Returns
self

16 Chapter 3. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

insert_link(target: str, link: str, count: int = -1)→ Paragraph
A convenience method which inserts links in the paragraph for all matching instances of a target string.
This method is modeled after str.replace(), so a count can be provided to limit the number of inser-
tions. This method will not replace links of text that have already been linked. See snakemd.Paragraph.
replace_link() for that behavior.

>>> paragraph = Paragraph("Go here for docs").insert_link("here", "https://
→˓snakemd.io")
>>> str(paragraph)
'Go [here](https://snakemd.io) for docs'

Parameters

• target (str) – the string to link

• link (str) – the url or path

• count (int) – the number of links to insert; defaults to -1 (all)

Returns
self

replace(target: str, replacement: str, count: int = -1)→ Paragraph
A convenience method which replaces a target string with a string of the users choice. Like
insert_link(), this method is modeled after str.replace() of the standard library. As a result, a
count can be provided to limit the number of strings replaced in the paragraph.

>>> paragraph = Paragraph("I come in piece").replace("piece", "peace")
>>> str(paragraph)
'I come in peace'

Parameters

• target (str) – the target string to replace

• replacement (str) – the string to insert in place of the target

• count (int) – the number of targets to replace; defaults to -1 (all)

Returns
self

replace_link(target_link: str, replacement_link: str, count: int = -1)→ Paragraph
A convenience method which replaces matching URLs in the paragraph with a new url. Like
insert_link() and replace(), this method is also modeled after str.replace(), so a count can be
provided to limit the number of links replaced in the paragraph. This method is useful if you want to replace
existing URLs but don’t necessarily care what the anchor text is.

>>> old = "https://therenegadecoder.com"
>>> new = "https://snakemd.io"
>>> paragraph = Paragraph("Go here for docs").insert_link("here", old).replace_
→˓link(old, new)
>>> str(paragraph)
'Go [here](https://snakemd.io) for docs'

Parameters

3.2. The Element API 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str.replace

SnakeMD

• target_link (str) – the link to replace

• replacement_link (str) – the link to swap in

• count (int) – the number of links to replace; defaults to -1 (all)

Returns
self

Quote

class snakemd.Quote(content: Union[str, Iterable[str | snakemd.elements.Inline | snakemd.elements.Block]])
Bases: Block

A quote is a standalone block of emphasized text. Quotes can be nested and can contain other blocks.

Parameters
content (str | Iterable[str | Inline | Block]) – the text to be formatted as a Mark-
down quote

• set to a string to render a whitespace respected quote (similar to snakemd.Code)

• set to a “list” of text objects to render a document-like quote (i.e., all items will be separated
by newlines)

__str__()→ str
Renders the quote as a markdown string. Markdown quotes vary in syntax, but the general approach in this
repo is to apply the quote symbol (i.e., >) to the front of each line in the quote:

> this
> is
> a quote

Quotes can also be nested. To make this possible, nested quotes are padded by empty quote lines:

> Outer quote
>
> > Inner quote
>
> Outer quote

It’s unclear what is the correct way to handle nested quotes, but this format seems to be the most friendly
for GitHub markdown. Future work may involve including the option to removing the padding.

Returns
the quote formatted as a markdown string

Raw

class snakemd.Raw(text: str)
Bases: Block

Raw blocks allow a user to insert text into a Markdown document without any processing. Use this block to
insert raw Markdown or other types of text (e.g., Jekyll frontmatter) into a document.

Parameters
text (str) – the raw text to append to a Document

18 Chapter 3. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

__str__()→ str
Renders the raw block as a markdown string. Raw markdown is unprocessed and passes directly through
to the document.

Returns
the raw block as a markdown string

Table

class snakemd.Table(header: Iterable[str | Inline | Paragraph], body: Iterable[Iterable[str | Inline | Paragraph]]
= [], align: None | Iterable[Align] = None, indent: int = 0)

Bases: Block

A table is a standalone block of rows and columns. Data is rendered according to underlying Inline items.

Raises
ValueError –

• when rows of table are of varying lengths

• when lengths of header and rows of table do not match

Parameters

• header (Iterable[str | Inline | Paragraph]) – the header row of labels

• body (Iterable[Iterable[str | Inline | Paragraph]]) – the collection of rows
of data; defaults to an empty list

• align (None | Iterable[Align]) – the column alignment; defaults to None

• indent (int) – indent size for the whole table; defaults to 0

class Align(value)
Bases: Enum

Align is an enum only used by the Table class to specify the alignment of various columns in the table.

CENTER = 3

LEFT = 1

RIGHT = 2

__str__()→ str
Renders the table as a markdown string. Table markdown follows the standard pipe syntax:

Header 1	Header 2
Item 1A	Item 2A
Item 1B	Item 2B

Alignment code adds colons in the appropriate locations. Final tables are rendered according to the widest
items in each column for readability.

Returns
a table as a markdown string

3.2. The Element API 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

add_row(row: Iterable[str | snakemd.elements.Inline | snakemd.elements.Paragraph])→ Table
A convenience method which adds a row to the end of table. Use this method to build a table row-by-row
rather than constructing the table rows upfront.

>>> table = Table(["Rank", "Player"], [["1st", "Crosby"], ["2nd", "McDavid"]])
>>> table.add_row(["3rd", "Matthews"])
<snakemd.elements.Table object at ...>
>>> str(table)
'| Rank | Player |\n| ---- | -------- |\n| 1st | Crosby |\n| 2nd |␣
→˓McDavid |\n| 3rd | Matthews |'

Raises
ValueError – when row is not the same width as the table header

Parameters
row (Iterable[str | Inline | Paragraph]) – a row of data

Returns
self

3.2.3 Inline Elements

One of the benefits of creating Block elements over using the Document methods is the control users now have over the
underlying structure and style. Instead of being bound to the string inputs, users can provide Inline elements directly.
For example, there is often a need to link Headings. This is not exactly possible through the Document methods as
even the returned Heading object has no support for linking. However, with Inline elements, we can create a custom
Heading to our standards:

>>> from snakemd import Heading, Inline, new_doc
>>> doc = new_doc()
>>> heading = doc.add_block(Heading(Inline("Hello, World!", "https://snakemd.io"), 2))

The remainder of this section introduces the Inline class.

Inline

class snakemd.Inline(text: str, image: Union[None, str] = None, link: Union[None, str] = None, bold: bool =
False, italics: bool = False, strikethrough: bool = False, code: bool = False)

Bases: Element

The basic unit of text in markdown. All components which contain text are built using this class instead of strings
directly. That way, those elements capture all styling information.

Inline element parameters are in order of precedence. In other words, image markdown is applied to the text first
while code markdown is applied last. Due to this design, some forms of inline text are not possible. For example,
inline elements can be used to show inline markdown as an inline code element (e.g., ![here](https://
example.com)). However, inline elements cannot be used to style inline code (e.g., **`code`**). If styled
code is necessary, it’s possible to render the inline element as a string and pass the result to another inline
element.

Parameters

• text (str) – the inline text to render

• image (None | str) – the source (either url or path) associated with an image

20 Chapter 3. Documentation

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

– defaults to None

– set to a string representing a URL or path to render an image (i.e., ![text](image))

• link (None | str) – the link (either url or path) associated with the inline element

– defaults to None

– set to a string representing a URL or path to render a link (i.e., [text](link))

• bold (bool) – the bold state of the inline text

– defaults to False

– set to True to render bold text (i.e., **text**)

• italics (bool) – the italics state of the inline element

– defaults to False

– set to True to render text in italics (i.e., _text_)

• strikethrough (bool) – the strikethrough state of the inline text

– defaults to False

– set to True to render text with a strikethrough (i.e., ~~text~~)

• code (bool) – the code state of the inline text

– defaults to False

– set to True to render text as code (i.e., `text`)

__str__()→ str
Renders self as a string. In this case, inline can represent many different types of data from stylized text to
code, links, and images.

>>> inline = Inline("This is formatted text", bold=True, italics=True)
>>> str(inline)
'_**This is formatted text**_'

Returns
the Inline object as a string

bold()→ Inline
Adds bold styling to self.

>>> inline = Inline("This is bold text").bold()
>>> str(inline)
'**This is bold text**'

Returns
self

code()→ Inline
Adds code style to self.

>>> inline = Inline("x = 5").code()
>>> str(inline)
'`x = 5`'

3.2. The Element API 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

Returns
self

is_link()→ bool
Checks if the Inline object represents a link.

>>> inline = Inline("This is not a link")
>>> inline.is_link()
False

Returns
True if the object has a link; False otherwise

is_text()→ bool
Checks if this Inline element is a text-only element. If not, it must be an image, a link, or a code snippet.

>>> inline = Inline("This is text")
>>> inline.is_text()
True

Returns
True if this is a text-only element; False otherwise

italicize()→ Inline
Adds italics styling to self.

>>> inline = Inline("This is italicized text").italicize()
>>> str(inline)
'_This is italicized text_'

Returns
self

link(link: str)→ Inline
Adds link to self.

>>> inline = Inline("here").link("https://snakemd.io")
>>> str(inline)
'[here](https://snakemd.io)'

Parameters
link (str) – the URL or path to apply to this Inline element

Returns
self

reset()→ Inline
Removes all settings from self (e.g., bold, code, italics, url, etc.). All that will remain is the text itself.

22 Chapter 3. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SnakeMD

>>> inline = Inline("This is normal text", link="https://snakemd.io",␣
→˓bold=True).reset()
>>> str(inline)
'This is normal text'

Returns
self

strikethrough()→ Inline
Adds strikethrough styling to self.

>>> inline = Inline("This is striked text").strikethrough()
>>> str(inline)
'~~This is striked text~~'

Returns
self

unbold()→ Inline
Removes bold styling from self.

>>> inline = Inline("This is normal text", bold=True).unbold()
>>> str(inline)
'This is normal text'

Returns
self

uncode()→ Inline
Removes code styling from self.

>>> inline = Inline("This is normal text", code=True).uncode()
>>> str(inline)
'This is normal text'

Returns
self

unitalicize()→ Inline
Removes italics styling from self.

>>> inline = Inline("This is normal text", italics=True).unitalicize()
>>> str(inline)
'This is normal text'

Returns
self

3.2. The Element API 23

SnakeMD

unlink()→ Inline
Removes link from self.

>>> inline = Inline("This is normal text", link="https://snakemd.io").unlink()
>>> str(inline)
'This is normal text'

Returns
self

unstrikethrough()→ Inline
Remove strikethrough styling from self.

>>> inline = Inline("This is normal text", strikethrough=True).unstrikethrough()
>>> str(inline)
'This is normal text'

Returns
self

3.3 The Template API

While the document and element APIs are available for folks who are already somewhat familiar with Markdown, a
template system is slowly being developed for folks who are looking for a bit more convenience. Ultimately, these folks
can expect support for typical document sections such as tables of contents, footers, copyrights, and more.

3.3.1 Template Interface

To allow for templates to be integrated with documents seamlessly, the Template interface was developed to inherit
directly from the Element interface, just like Block and Inline.

class snakemd.Template

Bases: Element

A template element in Markdown. A template can be thought of as a subdocument or collection of blocks. The
entire purpose of the Template interface is to provide a superclass for a variety of abstractions over the typical
markdown features. For example, Markdown has no feature for tables of contents, but a template could be created
to generate one automatically for the user. In other words, templates are meant to be conviences objects for our
users.

3.3.2 Templates

The template library is humble but growing. Feel free to share your ideas for templates on the project page or Discord.
Otherwise, the existing templates can be found below.

24 Chapter 3. Documentation

https://discord.gg/Jhmtj7Z

SnakeMD

TableOfContents

class snakemd.TableOfContents(doc: Document, levels: range = range(2, 3))
Bases: Template

A Table of Contents is an block containing an ordered list of all the <h2> headings in the document by default.
A range can be specified to customize which headings (e.g., <h3>) are included in the table of contents. This
element can be placed anywhere in the document.

Parameters

• doc (Document) – a reference to the document containing this table of contents

• levels (list[int]) – a range of integers representing the sequence of heading levels to
include in the table of contents; defaults to range(2, 3)

3.3. The Template API 25

https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

SnakeMD

26 Chapter 3. Documentation

CHAPTER

FOUR

RESOURCES

To help with all your SnakeMD needs, we’ve put together a set of resources organized by the major versions of the
library. The lists themselves are sorted by publish date, with the most recently published resources first.

4.1 v2.x

• 2023-04-14: How to Migrate to SnakeMD 2.0.0

• 2022-05-13: The Complete Guide to SnakeMD: A Python Library for Generating Markdown

4.2 v0.x

• 2022-01-22: SnakeMD 0.10.x Features Checklists

• 2021-09-24: How to Generate Markdown in Python Using SnakeMD v0.x

27

https://therenegadecoder.com/code/how-to-migrate-to-snakemd-2-0-0/
https://therenegadecoder.com/code/the-complete-guide-to-snakemd-a-python-library-for-generating-markdown/
https://therenegadecoder.com/meta/snakemd-0-10-x-features-checklists/
https://therenegadecoder.com/code/how-to-generate-markdown-in-python-using-snakemd/

SnakeMD

28 Chapter 4. Resources

CHAPTER

FIVE

VERSION HISTORY

Note: All versions of documentation are left in the condition in which they were generated. At times, the navigation
may look different than expected.

In an effort to keep history of all the documentation for SnakeMD, we’ve included all old versions below as follows:

5.1 v2.x

• v2.0.0 [#131]

– Setup code for 2023-04-14 release

– See beta releases below for the bulk of the changes

• v2.0.0b2 [#129, #130]

– Converted all code snippets in docs to doctests

– Reworked string input for Quote to pass directly through raw

– Updated language around parameters in documentation to provide a list of possible inputs and their effects

– Replaced url parameter with link parameter in insert_link() method of Paragraph

• v2.0.0b1 [#104, #107, #108, #110, #113, #115, #118, #120, #122, #123, #125, #126]

– Removed several deprecated items:

∗ Classes

· MDCheckList

· CheckBox

· Verification

∗ Methods

· Document.add_element()

· Document.add_header()

· Document.check_for_errors()

· Inline.verify_url()

· Paragraph.verify_urls()

· Paragaph.is_text()

29

https://github.com/TheRenegadeCoder/SnakeMD/pull/131
https://github.com/TheRenegadeCoder/SnakeMD/pull/129
https://github.com/TheRenegadeCoder/SnakeMD/pull/130
https://github.com/TheRenegadeCoder/SnakeMD/pull/104
https://github.com/TheRenegadeCoder/SnakeMD/pull/107
https://github.com/TheRenegadeCoder/SnakeMD/pull/108
https://github.com/TheRenegadeCoder/SnakeMD/pull/110
https://github.com/TheRenegadeCoder/SnakeMD/pull/113
https://github.com/TheRenegadeCoder/SnakeMD/pull/115
https://github.com/TheRenegadeCoder/SnakeMD/pull/118
https://github.com/TheRenegadeCoder/SnakeMD/pull/120
https://github.com/TheRenegadeCoder/SnakeMD/pull/122
https://github.com/TheRenegadeCoder/SnakeMD/pull/123
https://github.com/TheRenegadeCoder/SnakeMD/pull/125
https://github.com/TheRenegadeCoder/SnakeMD/pull/126

SnakeMD

∗ Parameters

· name from new_doc and Document

· code and lang from Paragraph

· quote from Paragaph

· render() and verify() from the entire repository

– Replaced several deprecated items:

∗ Classes

· Inline replaces InlineText

· Heading replaces Header

∗ Methods

· Inline.is_link() replaces Inline.is_url()

· Document.dump() replaces Document.output_page()

∗ Parameters

· link replaces url in Inline

– Added several new features:

∗ Included a Quote block which allows for quote nesting

∗ Incorporated ValueError exceptions in various class constructors

∗ Started a resources page in documentation

∗ Created a requirements file at the root of the repo to aid in development

– Improved various aspects of the repo:

∗ Expanded testing to 163 tests for 100% coverage

∗ Clarified design of Inline to highlight precedence

∗ Cleaned up documentation of pre-release version directives

∗ Expanded types of inputs on various classes for quality of life

∗ Changed behavior of horizontal rule to avoid clashes with list items

∗ Fixed bugs in logs and expanded logging capabilities

∗ Standardized docstring formatting

∗ Updated README automation to use latest features

Note: The gap between v0.x and v2.x is not a mistake. Initial development of SnakeMD used v1.x versions, which
contaminated the PyPI repository. To avoid failed releases due to version clashes, all v1.x versions have been deleted,
and the project has jumped straight to v2.x. Consider v2.x to be the official release of the module. Anything prior to
v2.x is considered a pre-release.

30 Chapter 5. Version History

SnakeMD

5.2 v0.x

• v0.15.0 [#97, #98, #99, #101]

– Moved README generation code to repo root as a script

– Expanded Heading constructor to support list of strings and Inline objects

– Migrated code block support from Paragraph class into new Code class

• v0.14.0 [#84, #86, #89, #90, #91, #95]

– Added Raw block for user formatted text

– Replaced InlineText with Inline

– Added Block and Inline classes

– Deprecated MDCheckList and CheckBox

– Replaced render with bulit-in str method

• v0.13.0 [#71, #74, #76, #78, #80, #82]

– Created a replacement method for output_page called dump

– Renamed Header class to Heading

– Included deprecation warnings for both output_page and header as well as others affected

• v0.12.0 [#65, #66]

– Added support for table generation on-the-fly (#64)

– Reworked documentation to include proper headings and organization

– Added support for strikethrough on InlineText elements (#58)

• v0.11.0 [#61, #62]

– Added support for table indentation

• v0.10.1 [#59]

– Enforced UTF-8 encoding in the output_page method (#54)

• v0.10.0 [#55, #56, #57]

– Added the CheckBox class for creating checkboxes

– Added the MDCheckList class for creating lists of checkboxes

– Added a Document method for implementing easy checklists

– Updated README to include a new section on checklists

• v0.9.3 [#50, #49]

– Added multiple versions of Python testing

– Restricted package to Python version 3.8+

– Added Markdown linting for main README

• v0.9.0 [#47, #46, #45]

– Added convenience function for creating new Document objects (#40)

– Ported documentation to Read the Docs (#43)

5.2. v0.x 31

https://github.com/TheRenegadeCoder/SnakeMD/pull/97
https://github.com/TheRenegadeCoder/SnakeMD/pull/98
https://github.com/TheRenegadeCoder/SnakeMD/pull/99
https://github.com/TheRenegadeCoder/SnakeMD/pull/101
https://github.com/TheRenegadeCoder/SnakeMD/pull/84
https://github.com/TheRenegadeCoder/SnakeMD/pull/86
https://github.com/TheRenegadeCoder/SnakeMD/pull/89
https://github.com/TheRenegadeCoder/SnakeMD/pull/90
https://github.com/TheRenegadeCoder/SnakeMD/pull/91
https://github.com/TheRenegadeCoder/SnakeMD/pull/95
https://github.com/TheRenegadeCoder/SnakeMD/pull/71
https://github.com/TheRenegadeCoder/SnakeMD/pull/74
https://github.com/TheRenegadeCoder/SnakeMD/pull/76
https://github.com/TheRenegadeCoder/SnakeMD/pull/78
https://github.com/TheRenegadeCoder/SnakeMD/pull/80
https://github.com/TheRenegadeCoder/SnakeMD/pull/82
https://github.com/TheRenegadeCoder/SnakeMD/pull/65
https://github.com/TheRenegadeCoder/SnakeMD/pull/66
https://github.com/TheRenegadeCoder/SnakeMD/issues/64
https://github.com/TheRenegadeCoder/SnakeMD/issues/58
https://github.com/TheRenegadeCoder/SnakeMD/pull/61
https://github.com/TheRenegadeCoder/SnakeMD/pull/62
https://github.com/TheRenegadeCoder/SnakeMD/pull/59
https://github.com/TheRenegadeCoder/SnakeMD/issues/54
https://github.com/TheRenegadeCoder/SnakeMD/pull/55
https://github.com/TheRenegadeCoder/SnakeMD/pull/56
https://github.com/TheRenegadeCoder/SnakeMD/pull/57
https://github.com/TheRenegadeCoder/SnakeMD/pull/50
https://github.com/TheRenegadeCoder/SnakeMD/pull/49
https://github.com/TheRenegadeCoder/SnakeMD/pull/47
https://github.com/TheRenegadeCoder/SnakeMD/pull/46
https://github.com/TheRenegadeCoder/SnakeMD/pull/45
https://github.com/TheRenegadeCoder/SnakeMD/issues/40
https://github.com/TheRenegadeCoder/SnakeMD/issues/43

SnakeMD

• v0.8.1

– Fixed an issue where nested lists did not render correctly

• v0.8.0

– Added range feature to Table of Contents (#41)

• v0.7.0

– Added replace_link() method to Paragraph

– Added various state methods to InlineText

– Expanded testing

– Lowered log level to INFO for verify URL errors

– Added code coverage to build

• v0.6.0

– Restructured api, so snakemd is the import module

– Updated usage page to show more features

– Fixed issue where base docs link would reroute to index.html directly

• v0.5.0

– Added favicon to docs (#26)

– Added mass URL verification function to Paragraph class (#27)

– Expanded testing to ensure code works as expected

– Changed behavior of insert_link() to mimic str.replace() (#19)

– Added a replace method to Paragraph (#27)

– Added plausible tracking to latest version of docs (#25)

• v0.4.1

– Added support for Python logging library (#22)

– Expanded support for strings in the Header, Paragraph, and MDList classes

– Fixed an issue where Paragraphs would sometimes render unexpected spaces (#23)

– Added GitHub links to version history page

– Added support for column alignment on tables (#4)

– Fixed issue where tables sometimes wouldn’t pretty print properly (#5)

• v0.3.0 [#21]

– Gave documentation a major overhaul

– Added support for paragraphs in MDList

– Added is_text() method to Paragraph

– Fixed issue where punctuation sometimes rendered with an extra space in front

• v0.2.0 [#17]

– Added support for horizontal rules

– Added automated testing through PyTest and GitHub Actions

32 Chapter 5. Version History

https://github.com/TheRenegadeCoder/SnakeMD/issues/41
https://github.com/TheRenegadeCoder/SnakeMD/issues/26
https://github.com/TheRenegadeCoder/SnakeMD/issues/27
https://github.com/TheRenegadeCoder/SnakeMD/issues/19
https://github.com/TheRenegadeCoder/SnakeMD/issues/27
https://github.com/TheRenegadeCoder/SnakeMD/issues/25
https://github.com/TheRenegadeCoder/SnakeMD/issues/22
https://github.com/TheRenegadeCoder/SnakeMD/issues/23
https://github.com/TheRenegadeCoder/SnakeMD/issues/4
https://github.com/TheRenegadeCoder/SnakeMD/issues/5
https://github.com/TheRenegadeCoder/SnakeMD/pull/21
https://github.com/TheRenegadeCoder/SnakeMD/pull/17

SnakeMD

– Added document verification services

– Added documentation link to README as well as info about installing the package

– Fixed table of contents single render problem

– Added a feature which allows users to insert links in existing paragraphs

• v0.1.0

– Added support for links, lists, images, tables, code blocks, and quotes

– Added a table of contents feature

5.2. v0.x 33

SnakeMD

34 Chapter 5. Version History

PYTHON MODULE INDEX

s
snakemd, 7

35

SnakeMD

36 Python Module Index

INDEX

Symbols
__str__() (snakemd.Code method), 13
__str__() (snakemd.Element method), 12
__str__() (snakemd.Heading method), 14
__str__() (snakemd.HorizontalRule method), 15
__str__() (snakemd.Inline method), 21
__str__() (snakemd.MDList method), 15
__str__() (snakemd.Paragraph method), 16
__str__() (snakemd.Quote method), 18
__str__() (snakemd.Raw method), 18
__str__() (snakemd.Table method), 19

A
add() (snakemd.Paragraph method), 16
add_block() (snakemd.Document method), 8
add_checklist() (snakemd.Document method), 8
add_code() (snakemd.Document method), 8
add_heading() (snakemd.Document method), 9
add_horizontal_rule() (snakemd.Document

method), 9
add_ordered_list() (snakemd.Document method), 9
add_paragraph() (snakemd.Document method), 9
add_quote() (snakemd.Document method), 10
add_raw() (snakemd.Document method), 10
add_row() (snakemd.Table method), 19
add_table() (snakemd.Document method), 10
add_table_of_contents() (snakemd.Document

method), 11
add_unordered_list() (snakemd.Document method),

11

B
Block (class in snakemd), 13
bold() (snakemd.Inline method), 21

C
CENTER (snakemd.Table.Align attribute), 19
Code (class in snakemd), 13
code() (snakemd.Inline method), 21

D
demote() (snakemd.Heading method), 14

Document (class in snakemd), 7
dump() (snakemd.Document method), 11

E
Element (class in snakemd), 12

G
get_text() (snakemd.Heading method), 14

H
Heading (class in snakemd), 14
HorizontalRule (class in snakemd), 15

I
Inline (class in snakemd), 20
insert_link() (snakemd.Paragraph method), 16
is_link() (snakemd.Inline method), 22
is_text() (snakemd.Inline method), 22
italicize() (snakemd.Inline method), 22

L
LEFT (snakemd.Table.Align attribute), 19
link() (snakemd.Inline method), 22

M
MDList (class in snakemd), 15
module

snakemd, 7

N
new_doc() (in module snakemd), 7

P
Paragraph (class in snakemd), 16
promote() (snakemd.Heading method), 14

Q
Quote (class in snakemd), 18

R
Raw (class in snakemd), 18

37

SnakeMD

replace() (snakemd.Paragraph method), 17
replace_link() (snakemd.Paragraph method), 17
reset() (snakemd.Inline method), 22
RIGHT (snakemd.Table.Align attribute), 19

S
scramble() (snakemd.Document method), 12
snakemd

module, 7
strikethrough() (snakemd.Inline method), 23

T
Table (class in snakemd), 19
Table.Align (class in snakemd), 19
TableOfContents (class in snakemd), 25
Template (class in snakemd), 24

U
unbold() (snakemd.Inline method), 23
uncode() (snakemd.Inline method), 23
unitalicize() (snakemd.Inline method), 23
unlink() (snakemd.Inline method), 23
unstrikethrough() (snakemd.Inline method), 24

38 Index

	Installation
	Usage
	Documentation
	The Document API
	Module
	Document

	The Element API
	Element Interface
	Block Elements
	Block Interface
	Code
	Heading
	HorizontalRule
	MDList
	Paragraph
	Quote
	Raw
	Table

	Inline Elements
	Inline

	The Template API
	Template Interface
	Templates
	TableOfContents

	Resources
	v2.x
	v0.x

	Version History
	v2.x
	v0.x

	Python Module Index
	Index

